
Exploiting Unix File-System Races via Algorithmic Complexity Attacks

Xiang Cai
xcai@cs.sunysb.edu

Yuwei Gui
ygui@ic.sunysb.edu

Stony Brook University

Rob Johnson
rob@cs.sunysb.edu

Abstract

We defeat two proposed Unix file-system race con-
dition defense mechanisms. First, we attack the proba-
bilistic defense mechanism of Tsafrir, et al., published
at USENIX FAST 2008[26]. We then show that the
same attack breaks the kernel-based dynamic race
detector of Tsyrklevich and Yee, published at USENIX
Security 2003[28]. We then argue that all kernel-based
dynamic race detectors must have a model of the
programs they protect or provide imperfect protection.
The techniques we develop for performing these attacks
work on multiple Unix operating systems, on uni- and
multi-processors, and are useful for exploiting most
Unix file-system races. We conclude that programmers
should use provably-secure methods for avoiding race
conditions when accessing the file-system.

1. Introduction

Time-Of-Check-To-Time-Of-Use (TOCTTOU) file-
system race-conditions have been a recurring prob-
lem in Unix operating systems since the 80s, and
researchers have proposed numerous solutions, in-
cluding static detectors[3], [30], [5], [7], dynamic
detectors[28], [17], [8], [29], [15], [20], extensions to
the Unix file-system interface[10], [33], and probabilis-
tic user-space defenses[10], [26].

This paper presents attacks on two proposed file-
system race-condition defense mechanisms. First, we
attack the probabilistic user-space defense mechanism
of Tsafrir, et al.[26]. This defense, which we call
atomic k-race, was awarded “Best Paper” at USENIX
FAST 2008 and builds on Dean and Hu’s k-race
algorithm[10]. Borisov, et al’s[4] maze attack defeated
k-race by forcing the victim to sleep on I/O. Atomic k-
race avoids sleeping on I/O with very high probability,
so a maze attack is not feasible. Instead, our attack
uses an algorithmic complexity attack on the kernel’s
filename resolution algorithm. This slows down the

k TY-Race OS Attacker Success
Wins/Trials Rate

9 No Linux 2.6.24 60/ 70 0.85
9 No FreeBSD 7.0 16/ 20 0.80
9 No OpenSolaris 5.11 20/ 20 1.00
9 No OpenBSD 3.4 53/100 0.53

20 Yes OpenBSD 3.4 65/100 0.65

Table 1. The success rates of our attacks against
atomic k-race and TY-Race.

victim’s file-system operations, enabling the attacker to
win races with high probability. We also develop two
new tools for manipulating the OS scheduler: clock-
syncing, which enables the attacker to reliably sleep
for a specific amount of time, and sleep-walking, which
enables the attacker to do work while sleeping. We use
these basic building blocks to defeat the atomic k-race
defense mechanism with high probability on multiple
operating systems, as shown in Table 1.

We then use the same tools to attack the dynamic
race-condition detector of Tsyrklevich and Yee[28],
which we call TY-Race. This detector modifies the
OpenBSD kernel to maintain a table of the results
of recent file access operations and verify that those
results are consistent. However, the attacker can indi-
rectly manipulate the entries in the table to circumvent
the defense mechanism. We further argue that any
kernel-based dynamic race detector must have at least
one of the following limitations: it must have side
information about the programs it protects, it must pro-
tect only a subset of all programs, it must be vulnerable
to DoS attacks, it must have false-positives, or it must
fail to prevent some race condition exploits. These
limitations stem from a fundamental state management
problem: without information about the programs it is
protecting, the kernel does not know when it can safely
remove an entry from the table. Every dynamic defense
system we analyzed used some less-than-perfect strat-
egy to solve this state management problem.

This paper focuses on the access(2)/open(2)
race, but the algorithmic complexity attacks we use
work on any name-based Unix system call, e.g.
stat(2), chdir(2), chmod(2), etc., so our at-
tack is applicable to other Unix file-system races. Al-
gorithmic complexity attacks can slow down lookups
on non-existent filenames, so our attack should also be
applicable to insecure temp-file creation races.

Our attacks could be thwarted by fixing the algorith-
mic complexity vulnerabilities within the OS kernels,
but there are several problems with this solution. Every
OS we tested is vulnerable to these attacks, so fixing
them would require a huge, coordinated effort among
OS vendors. Finding all the algorithmic complexity
bugs is not trivial (e.g. we found two different bugs
in OpenBSD name resolution), so it would be difficult
to have confidence in the results. Even if all the
algorithmic complexity attacks are fixed, other OS
features may still make our attack feasible (see, for
example, the discussion of Linux’s inotify mechanism
in Section 7). It would be more reliable to fix the Unix
system call interface to enable race-free file-system
access. Until that happens, programmers should only
use race-free file-access methods, at a potential cost in
code portability.

In summary, we develop new tools for exploiting
Unix file-system races, show that atomic k-race is inse-
cure, show that TY-Race is insecure, argue that kernel-
based dynamic race detectors must have a model of the
programs they protect or provide imperfect protection,
and argue that probabilistic race defense mechanisms
are likely to remain insecure for the foreseeable future.

2. The access(2)/open(2) Race

The access(2) system call was added to Unix
to enable setuid-root programs to safely access files
owned by the process’ invoker. When a regular user
invokes a setuid-root program, the program runs with
root privileges and hence can access any file on the
system. In certain applications, the setuid-root program
wishes to access a file only if its invoker can access that
file. The access(2) system call enables a setuid-
root program to test this condition. Figure 1 shows the
typical access(2)/open(2) usage pattern.

The attacker’s goal is to trick the victim program
into opening a file that the attacker cannot read. The
victim program in Figure 1 is not secure because
the state of the file-system may change between its
access(2) and open(2) calls. If the OS scheduler
switches to an attacker process after the victim has per-
formed access(2) but before it performs open(2),
then the attacker process can modify the file-system so

void main(int argc, char **argv)
{
int fd;
/* If my invoker cannot access

argv[1], then exit. */
if (access(argv[1], R_OK) != 0)
exit(1);

fd = open(argv[1], O_RDONLY);
/* Use fd... */

}

Figure 1. A setuid-program that uses the inse-
cure access(2)/open(2) design pattern. If an
attacker changes the file referenced by the given
filename between the access(2) and open(2)
calls, then this program may open a secret file.

void main(int argc, char **argv)
{
/* Assume "file" refers to a file

readable by the attacker. */
if (fork() == 0) {
system("victim file");
exit(0);

}
usleep(1);

unlink("file");
link("/etc/shadow", "file");

}

Figure 2. An attacker that exploits the vulnerable
program in Figure 1.

that the setuid-program opens a secret file. The attacker
code in Figure 2 attempts to trick the victim program
into reading the system’s secret password file. This
attack will only succeed if the operating system decides
to perform a context switch after the access(2) call
but before the open(2) call, as shown in Figure 3.

3. Proposed Run-time Defense Mecha-
nisms

Researchers have proposed numerous solutions to
the general TOCTTOU race problem, but we will only
discuss the proposals attacked in this paper.

3.1. Atomic k-Race

Figures 4 and 5 show the main routines of the atomic
k-race defense mechanism. For brevity, Figure 4 omits

Context switch

Context switch
access("file", R_OK)

Victim Attacker

open("file", O_RDONLY)

"file")
link("/etc/shadow",
unlink("file")

Figure 3. Sequence of events in a successful
access(2)/open(2) attack.

code for handling absolute paths, but our attack does
not use them anyway. The atomic_krace rou-
tine performs path traversal, including resolving sym-
bolic links, in user-space. The is_symlink rou-
tine simply calls lstat(2) to determine whether
a path component is a symbolic link. For each non-
symbolic-link path component, atomic_krace uses
atom_race to obtain a file-descriptor for that com-
ponent. The atom_race routine uses a modified
version of the original k-race algorithm to open its
atom argument. This function is the only part of
atomic k-race that is vulnerable to possible race con-
ditions. To defend against attempts to exploit this
vulnerability, the atom_race algorithm repeats the
lstat(2), access(2), open(2), fstat(2) se-
quence of system calls krounds times, verifying that
lstat(2) and open(2) always see the original file.

Altogether, atomic_krace, is_symlink, and
atom_race perform the sequence of system calls
LAOF (LAOFC)k on each non-symlink atom, where
L stands for lstat(2), A stands for access(2),
etc. An attacker that wishes to trick this algorithm
into opening a file that he cannot access must trick
atom_race on some atom. Since atomic k-race
checks that all its lstat(2) and open(2) calls see
the same file, the attacker must ensure that the atom
refers to his desired file when each of these system
calls execute. On the other hand, the attacker must
ensure that the atom refers to a file he can access
whenever the victim calls access(2). If a represents
the attacker’s action of switching the atom to point to
an accessible file, and s represents the act of switching
atom to point to the secret file, then the attacker must
cause the kernel to see the sequence of interleaved
actions

sLaAsOF (LaAsOFC)k

and hence the attacker must win 2k + 2 races to fool
the victim. If the attacker only has a probability p of
winning each race and each race is independent, then
the attacker’s total success probability is p2k+2.

int atomic_krace(char *path)
{
int fd;
char *suffix, target[MAXPATHLEN];
struct stat s;
bool is_sym;

/* Handle absolute paths */
/* Code omitted ... */

while(true) {
suffix = chop_1st(path);
DO_SYS(is_symlink(path, target,

&s, &is_sym));
DO_SYS(fd =

(is_sym ?
atomic_krace(target) :
atom_race(path, &s)));

if (suffix) {
DO_SYS(fchdir(fd));
DO_SYS(close(fd));
path = suffix;

} else
break;

}
return fd;

}

Figure 4. The main atomic k-race routine. This
routine iterates over each atom in path and per-
forms a k-race on that atom. It also handles
symbolic links by calling itself recursively. The
is_symlink routine calls lstat(2) on the given
atom to fill in the stat structure s and returns
whether the file is a symlink in is_sym.

The lstat(2) calls in atomic k-race thwart the
maze attack of Borisov, et al.[4]. The maze attack
succeeded against the original k-race by forcing the
kernel to follow a long sequence of symbolic links,
and consequently to perform disk I/O, on each of
the victim’s system calls. The lstat(2) calls in
atomic k-race will not follow symbolic links, so it
is more difficult for an attacker to reliably force the
kernel to perform I/O. Instead of using I/O, our attack
slows down the victim’s system calls by performing
an algorithmic complexity attack on the kernel’s name
cache. See Section 5.1.

Even without the new techniques developed in this
paper, atomic k-race is not as strong as it appears.
The calls to open(2), fstat(2), close(2),
and DO_CHK(DO_CMP(s0,&s2)) inside the for-

int atom_race(const char *atom,
struct stat *s0)

{
int i, mode;
int fd1, fd2;
struct stat s1, s2;

mode = S_ISDIR(s0->st_mode) ?
X_OK : R_OK;

DO_SYS(access(atom, mode));
DO_SYS(fd1 = open(atom, O_RDONLY));
DO_SYS(fstat(fd1, &s1));
DO_CHK(DO_CMP(s0, &s1));

for (i = 0; i < krounds; i++) {
DO_SYS(lstat(atom, &s1));
DO_CHK(!S_ISLNK(s1.st_mode));
DO_SYS(access(atom, mode));
DO_SYS(t = open(atom, O_RDONLY));
DO_SYS(fstat(t, &s2));
DO_SYS(close(t));
DO_CHK(DO_CMP(s0,&s1));
DO_CHK(DO_CMP(s0,&s2));

}
return fd1;

}

Figure 5. The heart the atomic k-race defense
mechanism. Before calling this function, the main
atomic k-race routine ensures that atom is a sin-
gle path component (i.e. it contains no “/”), calls
lstat(atom, s0), and checks the resulting s0
to verify that atom is not a symbolic link.

loop are unnecessary – the attacker would have to
win just as many races if they were removed. The
access(2) and open(2) calls are still vulnerable
to maze attacks – if the attacker can get scheduled after
the victim’s lstat(2) calls, then he can use mazes
to get scheduled after the victim’s access(2) and
open(2) calls. Thus k + 1 of the races are already
known to be easy, so the security of atomic k-race is
really pk+1, not p2k+2. In this paper, we attack the
“official” atomic k-race scheme with all system calls
and consistency checks in place, although our attack
should work just as well with the redundant operations
removed. Our attack does not use mazes, although an
attacker could use them to increase his success rate if
needed.

3.2. Kernel-Based Dynamic Race Detectors

Researchers have proposed several kernel-base dy-
namic race detection schemes[28], [17], [8], [29], [15],
[20], but all the proposals are based on a similar idea.
Each proposal modifies the kernel to maintain a table,
T , of the form (pid, dirID, fname, status), which
indicates that the last system call made by process
pid that referenced entry fname inside the directory
identified by dirID yielded a file with the given
status. The dirID ∈ Inodes is a unique identifier
for the referenced directory, e.g. the dirID could be
the device and inode numbers of the directory. The
status ∈ Inodes∪ ⊥ should uniquely identify the
file or indicate that the file did not exist.

Whenever process pid performs a path-based system
call, the kernel traverses the path, looking up the inode
for each element, starting with the process’ current
working directory. After looking up the status of
element fname inside directory dirID, the kernel
looks up (pid, dirID, fname) in T . If there is no
corresponding entry in T , then the kernel adds an
entry (pid, dirID, fname, status) to T . If it finds
an entry (pid, dirID, fname, status′) ∈ T , then the
kernel compares status and status′. If they are equal,
then the kernel proceeds to the next piece of the path.
Otherwise, the kernel may abort the calling process,
return an error to the caller, generate a log message,
or take some other action. Whenever a process updates
the status of some fname within dirID, the kernel
performs the above check before making the update,
then makes the update to the file-system, and finally
updates T to match.

All kernel-based dynamic race detectors must re-
move entries from T or it will eventually fill all
available memory. The kernel may delete a process’
entries when it exits, but a long-running process, such
as a server, will continue to accrue table entries. If the
kernel has side-information about the process’ actions,
e.g. if the process informs the kernel when it begins
and ends file-system transactions, then the kernel can
remove all the process’ entries as it completes each
transaction. Without this information, though, the ker-
nel cannot predict whether a process will reference a
given filename in T at some point in the future.

Such a defense mechanism can still offer protection
to “well-behaved” applications, but it cannot protect
arbitrary programs. For example, the kernel could give
each process n dedicated entries in T . As long as a
process never references more than n files within one
transaction, it will be protected. However, there exists a
program that cannot be protected by any kernel-based
dynamic race detection scheme. Imagine a setuid-root

program that calls access(2) on every file in a
user’s home directory, then rescans the directory, call-
ing open(2) on each file. On the first pass through
the user’s directory, the kernel will create entries in
T for each file. On the second pass, the open(2)
calls will be checked against these entries. An attacker
can circumvent this defense by creating so many files
in his home directory that T becomes filled before
the setuid-program finishes its first pass. The kernel
will necessarily discard some entries for the process.
The attacker can change one of the files in his home
directory to point to a file which he cannot access. The
setuid-program will then open that file on its second
pass, violating its security goals. The kernel could
prevent this attack by aborting the setuid program or
causing all its future system calls to fail, but this will
lead to false positives.

Some dynamic detectors, including TY-Race, as-
sume that all file races involve a single “check” system
call followed by a single “use” system call. With this
assumption, the kernel can remove an entry as soon
as its corresponding process makes a second reference
to the same filename. This assumption is invalid for
two reasons. First, some programs perform several
operations predicated on a single check. If the kernel
deletes the result of the check operation after the first
use operation, then the second use operation will not
be guaranteed to be consistent with the check. More
seriously, though, if a program performs two different
check/use pairs on distinct paths with a common prefix,
then the kernel will not ensure that the prefixes are
resolved consistently. This occurs because the first
check will bring entries for all the prefix elements into
T and the first use operation will cause the kernel to
remove those entries from T . The next check operation
will load new entries in the table, and hence may not
be consistent with the first check/use pair.

The above flaw prevents TY-Race from protecting
some programs, but it contains a second flaw that
enables us to circumvent its protection entirely. TY-
Race flushes entries in its table after about 2-3 seconds.
If an attacker can cause more than 2-3 seconds to
pass between the victim’s system calls, then TY-Race
will provide no protection. Our techniques enable the
attacker to get scheduled, and perform an arbitrary
amount of work, between each of the victim’s system
calls, so it should also be possible to defeat dynamic
race detectors that maintain a system-wide table and
flush entries using LRU. However, other table-flushing
policies, including maintaining small per-process ta-
bles, as done in RaceGuard[8], are not generally vul-
nerable to our attack.

setup(secret-file, fname)
if fork() == 0

exec(“victim fname”)
for i = 0, . . . , k

sleep(syscall-duration) // lstat
prepare(public-file, fname)
sleep(syscall-duration) // access
prepare(secret-file, fname)
sleep(syscall-duration) // open
prepare(secret-file, fname)
// fstat, close take negligible time

Figure 6. High-level pseudo-code for our attack
on atomic k-race. The value syscall-duration is the
time for the victim to perform one system call and
can be measured before beginning the attack. The
prepare command updates the file-system so that
fname points to the specified file, and performs
any other actions necessary to prepare for the next
race. If the attacker does not know k in advance,
the algorithm can loop until the victim exits.

4. Atomic k-Race Attack Overview

Figure 6 shows the overall structure of our attack
on atomic k-race. Before executing the attack, the
attacker must measure the time required to perform
the lstat(2), access(2), and open(2) system
calls. In our full attack, all these system calls will
take approximately the same amount of time, so the
pseudo-code just has one value, syscall-duration, to
cover them all. We also assume that the fstat(2)
and close(2) system calls complete very quickly,
which is true in practice. The prepare function modifies
the file system so that fname is a hard link to the given
target, and makes any other preparations to win the
next race.

A successful run of this attack will generate the
execution trace shown in Figure 7. This attack relies
on two features of current Unix implementations. First,
the OS must properly serialize system calls by the
victim and attacker. The attacker’s sleep timer expires
in the middle of the victim’s system call and, when
the attacker process runs, it modifies the file-system
in preparation for the victim’s next system call. The
attacker’s preparations must not affect the results of
the victim’s current system call.

The attack also assumes that the OS runs the sched-
uler at least once between each of the victim’s system
calls. This gives the attacker the opportunity to get
scheduled between each of the victim’s system calls.

lstat

accesswakeup

openwakeup

lstatwakeup

wakeup

victim
fork

...

scheduler
sleep

Kernel

scheduler

scheduler
sleep

scheduler

scheduler
sleep

scheduler

scheduler
sleep

scheduler

lstat

access

open

lstat

Attacker Victim

secret

public

secret

secret

prepare

prepare

prepare

prepare

fstat

Figure 7. The sequence of events during the
execution of the basic attack on atomic k-race.

The four versions of Unix that we tested all exhibited
the same behavior: the scheduler runs at the end of
each system call, as shown in Figure 7. We believe
the attack could easily be adjusted to systems that run
the scheduler at the beginning of each system call, or
at both the beginning and end, although we could not
verify this belief since none of the tested systems do so.
The attack may even be feasible on operating systems
that only run the scheduler when a process blocks on
I/O or reaches the end of its time quantum. In this
case, the attacker would have to force the victim’s
system calls to take longer than one time quantum so
that the victim can only make one call each time it is
scheduled. An adversary may be able to accomplish
this attack by scaling up the algorithmic complexity
attack described in the next section.

This attack will only succeed if each of the attacker’s

sleep timers expires during the execution of the vic-
tim’s subsequent system call. If the timer expires too
late, then the attacker process will still be asleep when
the scheduler runs and the kernel will return control
to the victim. Since the atomic k-race algorithm only
calls lstat(2), access(2), and open(2) on
atoms, these system calls only take a few microseconds
to execute, making the attacker’s wakeup window
quite small. Making matters worse, the sleep timers
on FreeBSD, OpenBSD, and OpenSolaris have much
coarser resolution – over 1 millisecond. See Table 2 for
system-call times and sleep resolutions of the kernels
tested with our attack. Thus this attack is infeasible
unless the attacker can slow down the victim’s system
calls by several milliseconds. The attacker must also
ensure that the scheduler chooses to run his process
whenever it is runnable. We solve these problems in
the next section.

5. Preparing for the Race

To win multiple races in succession, an attacker must
slow down the victim’s system calls and he must ar-
range to get scheduled after each of the victim’s system
calls. For the first task, we use an algorithmic complex-
ity attack against the kernel name lookup algorithm.
For the second task, we use nanosleep(2) and
multiple threads to effectively control the scheduler.

5.1. Algorithmic Complexity Attacks on Name
Resolution

Unix kernels maintain a cache of recently referenced
file and directory names in order to speed up future
name resolution operations. Whenever the kernel needs
to look up the inode for a given name, it first checks
the name cache. It only looks in its buffer cache
or performs I/O when the name cache lookup fails.
Every call to lstat(2), open(2), access(2), or
any other system call that takes a filename argument
performs lookups in the name cache. If we can make
name cache lookups slow, then we can make all these
system calls slow, too.

Every operating system we examined – Linux,
FreeBSD, OpenBSD1, and OpenSolaris – uses the
same basic data structure for its name cache: a hash
table with a hard-coded hash function. This data struc-
ture is known to be vulnerable to algorithmic complex-
ity attacks[9]. To see why, consider the pseudo-code for

1. OpenBSD has two algorithmic complexity vulnerabilities in its
name lookup algorithm. The second vulnerability, which is described
later, is easier to exploit, so we used it in our implementation.

OS File-system CPU Timer Res. (µs) No. of Files Prepare lstat(2) Time (µs)
Time(s) Normal Attack

Linux 2.6.24 ext3 2.8GHz Pentium D 1 6000 46 6 3120
FreeBSD 7.0 ufs 2.0GHz AMD Turion64 1000 8000 90 20 2500
OpenSolaris 5.11 zfs 2.0GHz AMD Turion64 10000 8000 190 30 3600
OpenBSD 3.4 (A) ffs 1.0GHz Pentium III 10000 4000 50 70 7000
OpenBSD 3.4 (B) ffs 2.4GHz Pentium IV 10000 18000 124 8 11100

Table 2. Algorithmic complexity attacks against name resolution in multiple operating systems.

procedure name-lookup(name)
h := hash(name)
listnode := C[h]
while listnode 6= nil

if listnode.name = name
return listnode.inode

listnode := listnode.next
return nil

Figure 8. Pseudo-code for hash-table lookups.

f2 fk

C[0] C[1] C[n-1]

f1

· · ·

· · ·

Figure 9. The state of the name-cache hash table
during an algorithmic complexity attack.

a hash-table lookup function in Figure 8. If an attacker
can discover ` distinct filenames, f1, . . . , f`, that all
hash to the same value, say 0, then he can create files
with those filenames, causing the kernel to create an
entry for each fi in the name cache. All these entries
will go into the linked-list stored in C[0], putting the
name cache into the state shown in Figure 9. Future
name lookups on f` will traverse the entire linked list,
requiring O(`) time. If all the filenames have a long
common prefix, then the traversal will be even slower
because the comparison “listnode.name = name” will
examine the entire prefix for each node in the list.

We can use this algorithmic complexity attack to
attack atomic k-race as follows. The adversary creates
f1, . . . , f`−1 as described above. He also creates f` as
a hard link to the target file he wants the victim to
open. He launches the victim program, passing f` as
the filename argument that it will open with atomic
k-race, i.e. f` is the fname argument in Figure 6. As
long as f` remains at the end of its linked-list in the
kernel name cache, the victim’s system calls will all
be slow, enabling the attacker to successfully execute
that attack outlined in Figure 7. Note that in this attack,

the filenames f1, . . . , f` do not have to collide with the
“canonical” name of the attacker’s target file. Since the
victim performs all its accesses through the hard link
f`, this is the only filename that needs to be slow.

To perform this attack on a given operating system,
the adversary must first construct a list of filenames
that collide under that operating system’s hash func-
tion. We could have just used the generator-based
filename generation algorithm of Crosby, et al.[9], but
we noticed that all the hash functions on the systems
we tested are vulnerable to straightforward birthday
attacks. By exploiting this weakness, we were able to
generate tens-of-thousands of colliding filenames on
each OS in only a few seconds (instead of half an hour
as with the Crosby attack). Our filenames all had long
(> 240 characters) common prefixes, maximizing the
effect of the algorithmic complexity attack. Full details
on the filename generation are given in Appendix A.

Given the colliding filenames f1, . . . , f`, Figure 10
shows our algorithm for initializing f` to point to a
given target file and setting up the kernel name cache
so that queries for f` will be slow2. We discovered
that some operating systems do not add entries to the
cache for all operations, e.g. calling open(2) with
O_CREAT did not seem to create a cache entry on
FreeBSD. The init-hash-table algorithm in Figure 10
uses both lstat(2) and open(2), so it works on
Linux, FreeBSD, and OpenSolaris.

The init-hash-table routine runs in O(`2) time be-
cause, every time the kernel creates a new entry in
its name cache, it first traverses all the entries in the
cache to ensure that the name doesn’t already exist.
As a result, setting up the kernel data structures may
take several minutes, as shown in Table 2. Recall that,
to win each race, the attacker must make the victim’s
system calls take longer than the OS timer resolution.
Section 5.2 describes techniques for relaxing this re-
quirement, enabling us to use fewer files in the attack.

Table 2 shows the efficacy of this algorithmic com-
plexity attack on Linux, OpenSolaris, and FreeBSD

2. Figures 10–12 present the FreeBSD version of the attack. The
other operating systems require slight variations on this attack, which
are described in the text.

procedure init-hash-table(target)
unlink(f`)
link(target, f`)
close(open(f`, O RDONLY))
lstat(f`)
for i = 1, . . . , `− 1

unlink(fi)
close(open(fi, O CREAT))
lstat(fi)

Figure 10. Algorithm for setting up the FreeBSD
kernel name cache so that f` points to target and
ensuring that subsequent accesses to f` will be
slow. This algorithm also works on OpenSolaris.

(the OpenBSD measurements exploit a different algo-
rithmic complexity attack described below). By using
only a few thousand filenames, the attacker can make
the victim’s system calls take several milliseconds.
The attacker can then arrange to wake up during the
victim’s system call, as described in Section 5.2.

Updating f`. On FreeBSD and OpenSolaris, the
init-hash-table routine in Figure 10 can also be used
to update f` to point to a new target. The first 4 lines
will update f` and ensure that it is in the hash table.
The for-loop then causes the kernel to delete its cache
entries for f1, . . . , f`−1 and recreate them. Afterwards,
their cache entries will all be in front of the entry for
f`, so future lookups on f` will still be slow.

The Linux filename cache is more complicated. It
maintains both regular cache entries and “negative”
entries, performs some updates in place, and maintains
several auxiliary data structures that complicate its
behavior. Our attack sidesteps this complexity by using
rename(2) to move f1, . . . , f`−1 to another filename
with a different hash value, and then renames them
back to their original name. This causes Linux to
move the cache entries for these files to a different
bucket. When the attack renames them back to their
original names, the kernel moves them to the front of
the bucket.

OpenBSD. We use a slightly different algorithmic
complexity attack on OpenBSD. The OpenBSD name
cache omits names over 31 characters long, so our
attack uses 255 character filenames. This causes the
kernel to look in its disk-block cache for each name
lookup. Directory entries are stored on disk in order
of creation and the kernel simply scans through each
block until it finds the desired entry. We therefore
create directory entries f1, . . . , f` in order, ensuring
that the kernel will have to scan through all the entries
to find f`. When our attack updates f` to point to a

new target, the kernel performs the changes in place,
so future accesses to f` will still be slow.

OpenBSD’s directory traversal algorithm introduces
one small wrinkle in the above attack. The kernel
begins its traversal where the last name lookup fin-
ished. If the victim runs immediately after the attacker
updates f`, the the victim’s lookup will start at the
block containing f` and hence will complete very
quickly. Our attack solves this problem by performing
a lookup on f1 after updating f`, moving the search
pointer back to the beginning of the directory and
causing the victim’s subsequent lookup on f` to be
slow.

Buying time. When the attacker gets scheduled
after one of the victim’s system calls, he only has
one time quantum to update f`, but the algorithm in
Figure 10 may take several minutes. Our attack solves
this problem by suspending the victim as soon as the
attacker gets scheduled. The POSIX.1-2001 standard
specifies that an unprivileged process may send a signal
to a privileged process whenever the real or effective
userid of the sender matches the real or saved userid of
the receiver. Thus, the attacker can send SIGSTOP to
a setuid-root victim on any POSIX-compliant system.
After init-hash-table completes, the attacker can send
the SIGCONT signal to the victim, allowing it to
continue.

On Linux, FreeBSD, and OpenBSD, the victim is
removed from the run-queue as soon as the attacker
sends the SIGSTOP signal, so the above strategy works
as expected, but on Solaris, the victim is not removed
from the run-queue until after its next system call.
The attacker therefore has at most one time quantum
in which to update f`, which is not enough time to
run the init-hash-table algorithm. This difference may
appear to be a problem at first, but actually allows
the attacker to win two races for the price of one.
Before launching the victim, the attacker sets up the
name cache so that the victim’s first system call will be
slow and the attacker will get scheduled immediately
after it completes. When the attacker gets to run, he
sends SIGSTOP to the victim and calls unlink(2)
and link(2) to update f` to point to the new target.
These operations are fast and can complete within
one time quantum. On Solaris, the victim’s subsequent
access to f` will now be very fast, but this no longer
matters. After the victim performs its next system call,
the kernel will process the pending SIGSTOP and
move it off the run queue. The attacker will then get
to run and may take as much time as it needs to set
up to repeat this process.

Fast file switching. The usual idiom for changing
f` to point to a new file, t, requires two system

calls, unlink(f`) followed by link(t, f`), but
we can do better by using rename(2). For each
file, t, to which the attacker might need to link f`,
the attacker creates a directory of files t1, . . . , tm,
all of which are links to t. The attacker can create
these files in advance of the actual attack, so this
step is not time-critical. The actual names t1, . . . , tm
are not important, and the attacker can create these
files anywhere on the same file-system as t. Later,
whenever the attacker needs to switch f` to point to t,
he can simply call rename(ti,f`). The rename(2)
system call replaces f` if it exists, and will remove ti,
so the attacker can use each ti at most once.

By using rename(2), the OpenBSD prepare al-
gorithm needs to perform only two system calls:
rename(ti, f`) and lstat(f1). These two op-
erations are extremely fast, requiring only a few mi-
croseconds each, so the attacker does not need to
send SIGSTOP (or SIGCONT) to the victim. From
our reading of the Linux, FreeBSD, and OpenSolaris
source codes, fast file switching provides no benefit on
those systems, since the prepare algorithm still needs
to perform several thousand other system calls.

The experimental results on Linux, FreeBSD,
OpenSolaris, and OpenBSD configuration (A)
all use SIGSTOP/SIGCONT and the standard
unlink(2)/link(2) idiom. The experiments on
OpenBSD configuration (B) use fast file switching
and do not send any signals to the victim.

5.2. Scheduler Management

Once the attacker has arranged to have his sleep
timer expire during the victim’s next system call, he
needs to ensure that the scheduler will choose to
run his process. The attacker must also avoid being
descheduled after starting the victim but before call-
ing nanosleep(2). The attacker must consistently
sleep for one tick of the sleep timer, but if he calls
nanosleep(2) right before one tick of the timer,
he may sleep for two ticks of the timer. Finally, the
OS scheduler may behave unpredictably on multi-
processor. We now describe solutions to these prob-
lems.

Priority laundering. Our attacker launches the
victim with the fork(2)/execvp(3) idiom, so be-
fore calling execvp(3), the forked child can use
nice(2) to decrease its priority. The victim will
inherit this reduced priority when the child process
execs it. On some operating systems, this is sufficient
to ensure the attacker will get scheduled whenever
the victim and attacker are both runnable. On some
operating systems, such as Linux, the priority of a

process only affects the size of its time-slice within
one scheduling epoch[18], so adjusting priorities is not
enough.

Fortunately, most operating systems include heuris-
tics to schedule I/O-bound processes whenever they are
runnable. Tsafrir, et al, exploited this scheduler behav-
ior to monopolize the CPU[24]. Our attack exploits
this feature by launching a sub-process to perform all
the file-system manipulations needed to prepare for the
next race, effectively laundering the main attacker’s
scheduling priority by dumping all the dirty work on
its child. The main attacker thread sleeps while the
sub-process is working. The main attacker process
spends almost all of its time sleeping – either waiting
on its worker sub-process or the victim – and hence
looks like an I/O-bound process and gets preferential
scheduling. Although the victim also spends most of
its time suspended, it apparently does not get the same
priority boost. This is probably because it is suspended
as a result of a signal instead of I/O or voluntarily
sleeping.

Sleep-walking. After the attacker process has
finished preparing for the next race, it needs to
perform two actions nearly simultaneously: (1) call
nanosleep(2) and (2) awaken the victim by calling
kill(2). The attacker cannot call nanosleep(2)
and then awaken the victim, since it would not
be able to awaken the victim until the end of the
nanosleep(2). However, if the OS returns control
to the attacker process after its kill(2) system call,
then the attacker can simply call kill(2) followed
by nanosleep(2). If, on the other hand, the kernel
transfers control to the victim at the end of the at-
tacker’s kill(2) system call, then this method will
not work.

Our attack solves this problem by using two pro-
cesses, as shown in Figure 11. At startup, the attacker
creates a segment of memory that will be shared with
a helper process. As long as the parent does not get
descheduled between writing “1” to the shared segment
and calling nanosleep(2), then this technique will
ensure that the victim is awakened immediately after
the parent calls nanosleep(2). Since the main
attacker process writes 0 to the shared segment before
forking the child, the shared memory segment should
be in memory, so writing the non-zero value should
not cause a page fault, which could cause the main
attacker process to get descheduled. Since the parent
sleeps briefly before writing 1 to the shared segment, it
should have a full time quantum to perform the second
write and call nanosleep(2), making it extremely
likely that these two actions will execute atomically.

In our experiments with Linux on a multi-processor,

procedure sleep-walk(duration, func, arg)
shared-flag = 0
if fork() == 0

// Child: wait for parent to sleep
while shared-flag = 0

do nothing
func(arg)
exit(0)

sleep() // sync with clock
s = now() // busy-wait to reduce sleep time
while now() - s + duration < clock-resolution

do nothing
shared-flag = 1 // let child run after we sleep
sleep() // sleep until clock tick

Figure 11. Algorithm for simultaneously execut-
ing func(arg) while sleeping for duration. The re-
quested duration must be less than the clock-
resolution. This algorithm works on FreeBSD,
OpenBSD, and OpenSolaris.

sleepwalking resulted in unreliable scheduling behav-
ior and sleep times, so our Linux attack program
calls kill(2) followed by nanosleep(2). Our
experiments on a multi-processor suggest that Linux
schedules the awakened victim on a separate CPU, so
the attacker gets to continue executing at the end of its
kill(2) system call.

Syncing with the clock. The first sleep in the
above algorithm serves a second purpose: it synchro-
nizes the attacker with the kernel’s clock ticks. Our ini-
tial experiments showed that calling nanosleep(2)
with a short sleep duration would often cause the
attacker program to sleep for two clock ticks. We
determined that this occurred whenever the attacker
called nanosleep(2) right before a clock tick. By
calling nanosleep(2) twice in a row, we ensure
that the second nanosleep(2) occurs immediately
after a clock tick and hence will yield a much more
reliable sleep time.

OpenBSD and OpenSolaris have very low-resolution
sleep timers, so our attack uses busy-waiting to shrink
the effective sleep time. If the clock has resolution rms,
then the attacker can reduce his sleep time to r′ms
by busy-waiting for r− r′ milliseconds before calling
nanosleep(2). This step is not strictly necessary
for the attack to succeed, it just reduces the effective
sleep time, and hence the number of files required
in the algorithmic complexity attack, and hence the
running time of the attack. Figure 11 includes this
busy-waiting step.

Multi-processors. This attack is able to stay syn-
chronized with the victim because, on a uni-processor,
the attacker and victim cannot both run simultane-
ously. On Linux, the attack can be trivially adapted
to multi-processor and multi-core systems by using
sched_setaffinity(2) to bind the attacker pro-
cess to a specific CPU or core. This binding is in-
herited by the attacker’s child processes, including
the victim, so that the attacker and victim effec-
tively run in a single-processor environment. Solaris
appears to support similar functionality through its
processor_bind system call, and FreeBSD has
cpuset_setaffinity, so this approach is reason-
ably general.

However, it is not always necessary to bind all the
processes to a single CPU. The next section presents
experimental results on a dual-core Linux machine,
both with and without binding all processes to a single
core.

5.3. Summary

Figure 12 shows the revised, complete attack al-
gorithm for FreeBSD. The Linux, OpenSolaris, and
OpenBSD versions are similar, except for the caveats
described above. After setting up the initial state of
the kernel name cache, the attacker uses the sleep-
walk method to launch the victim. By using sleep-
walk to launch the victim, the attacker will get to sleep
before the victim starts, regardless of how the kernel
schedules processes after fork(2) and execvp(3)
system calls. After the victim has started, the attacker
gets to run once after each of the victim’s lstat(2),
access(2), and open(2) calls. Each time the
attack program runs, it calls prepare, which puts the
victim to sleep, launches a separate process to update
f`, sleeps while that process does its work, and then
uses sleep-walk to simultaneously go to sleep while
awakening the victim.

6. Evaluation

Table 3 shows the success of our attack against
atomic k-race on various operating systems3. Our
attack breaks atomic k-race with the recommended
security parameter k = 9 on all the tested operating
systems with probability at least 0.5. Increasing the se-
curity parameter is not a viable response to this attack,
as Table 3 shows that we can defeat atomic k-race with
k = 20 with probability at least 0.5, too. Surprisingly,

3. Some systems have fewer trials because the attack takes several
hours to execute.

procedure prepare(target)
kill(victim-pid, SIGSTOP)
if fork() == 0

init-hash-table(target)
exit(0)

else
wait for child to exit

sleep-walk(syscall-duration,
kill, (victim-pid, SIGCONT))

procedure attack(victim, secret-file, public-file)
init-hash-table(secret-file)
sleep-walk(syscall-duration, exec, “victim f`”)
for i = 0, . . . , k

prepare(public-file)
prepare(secret-file)
prepare(secret-file)

Figure 12. The prepare and attack algorithms
for FreeBSD. The prepare routine updates f` and
prepares to win the next race. The attack algorithm
defeats k rounds of atomic k-race by repeatedly
calling prepare.

the success rate on OpenBSD (configuration (A)) with
k = 20 appears to be higher than with k = 9. This
is because, in all our OpenBSD experiments, if the
attacker won the first race, then he always won all
subsequent races. Hence the success rate on OpenBSD
is just the probability of winning the first race and is
thus largely independent of k. The results on OpenBSD
(configuration (B)) demonstrate that by using fast file
switching, we can defeat atomic k-race on OpenBSD
without using SIGSTOP/SIGCONT. The success rate
is much higher than in configuration (A) because we
spent more time tuning it to win the first race. The
Linux results in this table were generated on a dual-
core CPU and did not use sched_setaffinity or
sleep-walking.

This attack also breaks TY-Race. Recall that TY-
Race flushes entries from its table after about 2
seconds. Our attack was able to completely evade
detection by pausing for 5 seconds between sending
SIGSTOP to the victim and modifying f`. We tested
our attack on TY-Race by attacking the atomic k-race
victim with the kernel-based TY-Race activated. We
also verified that, if our attack did not pause for 5
seconds, then the TY-Race kernel module detected the
race condition and generated a log message. Table 3
shows that TY-Race had no appreciable impact on our
success rate. TY-Race never detected our attack, even

k TY-Race OS Attacker Success
Wins/Trials Rate

9 N/A Linux 2.6.24 60/ 70 0.85
9 N/A FreeBSD 7.0 16/ 20 0.80
9 N/A OpenSolaris 5.11 20/ 20 1.00
9 No OpenBSD 3.4 (A) 53/100 0.53
9 No OpenBSD 3.4 (B) 45/45 1.00

20 N/A Linux 2.6.24 22/ 30 0.73
20 N/A FreeBSD 7.0 22/ 40 0.55
20 N/A OpenSolaris 5.11 20/ 20 1.00
20 No OpenBSD 3.4 (A) 60/100 0.60
20 Yes OpenBSD 3.4 (A) 65/100 0.65

Table 3. The success rates of our attacks.

CPU Binding No No Yes Yes
Sleep-walking No Yes No Yes
No. of Files 4000 4000 6000 4000
lstat(2) Time(µs) 2980 2100 3100 2089
Observed Sleep
Times(µs)

506 500, 2000,
4000, 6000

3170 2220

Wins/Trials 54/70 1/100 0/100 93/95
Success Rate 0.77 0.01 0.00 0.98

Table 4. The interaction of CPU binding and sleep
walking on a dual-core Pentium D Linux 2.6.24
machine. In all cases, the attacker requested to

sleep for 500µs, and the victim used k = 9.4

when it failed.
Table 4 shows how sleep-walking interacts with

CPU binding on a dual-core Linux machine. In the first
experiment, the attacker’s observed sleep time is less
than the time required for the victim to complete its
system call, proving that, on a multi-processor Linux
system, the attacker can wake up in the middle of the
victim’s system call. The Linux results in Table 3 use
the same attack and achieved a similar success rate.
The second experiment shows that sleep-walking on
a multi-processor produces unreliable scheduling, and
hence unreliable sleep times. The success rate is conse-
quently very low. The third and fourth experiments use
CPU binding to effectively reduce a multi-processor
system to a uni-processor system. In both experiments,
the attacker’s sleep times show that it never wakes
up in the middle of the victim’s system call. The
third experiment shows that sleep-walking is necessary
on uni-processor systems because the Linux scheduler
gives control to the victim as soon as the attacker
sends it SIGCONT. The fourth experiment shows that
sleep-walking is very effective on uni-processor Linux
systems.

4. These experiments were run in parallel on two different ma-
chines: a 2.4GHz CPU with Ubuntu kernel 2.6.24-19, and a 2.8GHz
CPU with Ubuntu kernel 2.6.24-21. We do not believe the differences
affected the outcome of the experiments.

7. Discussion

Although we have developed this attack in the con-
text of the access(2)/open(2) race, the tools we
use and develop in this paper – algorithmic complexity
attacks, priority laundering, and sleep-walking – are
generally useful for exploiting Unix file-system races.
For example, the algorithmic complexity attack on the
kernel name cache will also slow down name lookups
for non-existent names. Thus, an attacker could use
this technique to exploit a temporary file creation race
in which the victim checks for the existence of a
predictable filename before creating this file.

One could attempt to fix atomic k-race by adding
randomized busy-waits between each system call. On
a uni-processor system, the attacker could respond by
scaling up the algorithmic complexity attack until it
can reliably wake up during victim system calls. On
a multi-processor, the attacker can poll a system-call
distinguisher[4] to detect when the victim begins each
system call. In this case, the algorithmic complexity
attack is used to make the system call take long enough
to observe via polling. The attacker can then use the
same prepare algorithm to win the race.

On OpenBSD, the attacker does not need to send
SIGSTOP and SIGCONT to the victim. Thus, the
attack is not just applicable to setuid-root programs,
but to any program, including privileged servers. This
also implies that the victim cannot defend itself from
our attack by registering a handler for SIGCONT and
aborting if it ever receives that signal during the atomic
k-race algorithm, as suggested by Dan Tsafrir[23].

As with the original k-race algorithm, one could
consider a randomized version of atomic k-race
that randomly chooses to perform either lstat(2)
or access(2) on each iteration of strengthening.
Borisov, et al. defeated randomized k-race by causing
the victim to sleep on I/O in the middle of each
system call, enabling them to update the file-system so
the system call would succeed. This technique cannot
be directly applied to convert the present attack on
atomic k-race into an attack on randomized atomic
k-race because our attack does not pause the victim
in the middle of its system calls. Defeating random-
ized atomic k-race is therefore still an open problem.
Despite this, given the repeated failures of previously
proposed probabilistic race defense mechanisms, we
do not recommend randomized atomic k-race for any
application.

Fixing the algorithmic complexity vulnerabilities
exploited in this attack would be straightforward –
simply replace the hash tables with balanced binary
trees. However, this still would not give us great

confidence in the security of atomic k-race, since the
OS may contain some other algorithmic complexity
vulnerability that an attacker could use instead. For
example, as mentioned in Section 5.1, OpenBSD con-
tains two algorithmic complexity vulnerabilities on its
name-lookup code path.

Probabilistic race defenses are brittle because they
make so many unspecified assumptions about the un-
derlying OS. By leaving a non-zero chance that the
attacker can win races against the victim, probabilistic
schemes pull the performance characteristics of the OS
and hardware into the trusted computing base. Proba-
bilistic defense mechanisms are also likely to interact
poorly with new OS features, implying that over time,
these schemes will become less secure. For example,
the relatively new Linux “inotify” feature allows one
process to “watch” the opens, closes, reads, and writes
of other processes to files in a watched directory.
Our experiments with inotify revealed that, when a
process opens a watched file, the watching process
gets to run as soon as the open completes but before
control is returned to the original process. This gives
an attacker great control over the scheduling of certain
system calls – open(2), read(2), write(2), and
rename(2), among others. Future OS enhancements
may give attackers even more power.

Until a general solution is found, we recom-
mend that programmers choose security over porta-
bility when accessing the file-system. Most oper-
ating systems offer some non-portable but secure
way to accomplish the equivalent functionality of
access(2)/open(2). Alternatively, if program-
mers are confident that their code will be de-
ployed only on systems that use the user/group/other
read/write/execute permission bits with no ex-
tensions (such as ACLs), then the deterministic
access(2)/open(2) algorithm of Tsafrir et al.
looks correct and secure on those systems[25].

8. Related Work

Static detectors. Static bug finders detect security
flaws in source code before it is compiled, and can
therefore offer very strong levels of protection[3], [5],
[22], [7], [30], [11], [12], [13]. Some static analysis
tools strive for soundness, i.e. a guarantee that they will
not miss any bugs, but file-system race conditions re-
quire both data and control flow analysis, making them
difficult to analysis precisely and soundly. Therefore,
most practical static checkers are unsound.

Dynamic detectors and preventers. Dynamic
race condition detectors come in two basic varieties:
preventers[8], [28], [29] and detectors[1], [14], [16],

[17], [32]. As argued in Section 3, run-time prevention
of race-condition attacks must always face a state
management problem. Some detectors, though, merely
log information at run-time and perform the analysis
off-line. This mitigates the state management problem,
but sacrifices prevention power.

Probabilistic defenses. Both probabilistic de-
fenses for file-system races are broken[10], [26], [4].

Interface changes. Bishop suggested that
access(2) be replaced with an faccess system
call that takes a file descriptor as its argument[2].
Unfortunately, the result of an access(2) call
depends on the entire path to the resulting file, but
faccess would only be able to check permissions
on the last component. Dean and Hu suggested
an O_RUID flag for open, which would solve the
access(2)/open(2) problem quite cleanly, but is
not a general solution[10]. Maziéres and Kaashoek
propose capability-based interfaces to solve the
race-condition problem[19]. Schmuck and Wylie and
Wright, et al. have suggested adding support for
transactions to the OS interface[21], [33].

User-space solutions. Tsafrir, et al, have sub-
sequently proposed a deterministic solution to the
access(2)/open(2) problem[25]. In their new
proposal, programs perform path-traversal and access-
control checks in user-space. Their implementation
looks portable and correct on systems that only imple-
ment the normal user/group/other read/write/execute
permissions, but it may lead to incorrect access deci-
sions on systems that use more complex access-control
data structures, such as ACLs. In the specific case of
POSIX draft ACLs, this could only result in a setuid-
root program erroneously refusing to open a file, but
other OS extensions could result in falsely granting
access.

A setuid-root program can use the setuid(2)
family of functions to temporarily drop its privi-
leges before calling open(2). This solution is free
of file-system races, but could be vulnerable to
tractor-beaming attacks[31], and the Unix user ID
management interface is notoriously complex and
non-portable[6]. There’s no reason this functional-
ity couldn’t be encapsulated in a library, hiding the
portability issues from developers. Tsafrir, et al. have
proposed just such an interface for simplifying user
ID management[27]. Their implementation correctly
handles user IDs, group IDs, and supplemental group
IDs, but does not handle any other OS-dependent
access-control data structures, such as capabilities.

9. Conclusion

The atomic k-race algorithm is insecure on four
of the most common Unix operating systems in use
today – Linux, FreeBSD, Solaris, and OpenBSD – so
it should never be used. Even if all of these operating
systems fixed the algorithmic complexity attack that
makes our attack possible, there will likely be some
other operating system that is vulnerable, and legacy
systems will remain vulnerable. Even if every operat-
ing system in the world corrected this problem and all
legacy systems were upgraded, there may be other OS
features, such as future inotify implementations, that
render atomic k-race insecure.

The attack techniques presented in this paper are
not specific to the access(2)/open(2) race. Most
Unix race conditions can be exploited using these tools,
so programmers should give race conditions the same
level of consideration that they would give buffer-
overflows or other software vulnerabilities.

Acknowledgements

We are grateful to Nikita Borisov, Sam King,
Naveen Sastry, Dan Tsafrir, and David Wagner for their
many helpful comments on this research.

Availability

Our atomic k-race implementation and attack code
are available at http://splat.cs.sunysb.edu/.

References

[1] Ashish Aggarwal and Pankaj Jalote. Monitoring the
security health of software systems. Software Reliabil-
ity Engineering, 2006. ISSRE ’06. 17th International
Symposium on, pages 146–158, Nov. 2006.

[2] Matt Bishop. Race conditions, files, and security flaws;
or the tortoise and the hare redux. Technical Report
CSE-95-8, UC Davis, September 1995.

[3] Matt Bishop and Michael Dilger. Checking for
race conditions in file accesses. Computing Systems,
9(2):131–152, Spring 1996.

[4] Nikita Borisov, Rob Johnson, Naveen Sastry, and David
Wagner. Fixing races for fun and profit: how to abuse
atime. In Proceedings of the 14th USENIX Security
Symposium. USENIX Association, 2005.

[5] Hao Chen and David Wagner. MOPS: an infrastructure
for examining security properties of software. In
Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS), pages 235–244,
Washington, DC, November 18–22, 2002.

[6] Hao Chen, David Wagner, and Drew Dean. Setuid
demystified. In Proceedings of the 11th USENIX
Security Symposium, pages 171–190, Berkeley, CA,
USA, 2002. USENIX Association.

[7] Brian Chess. Improving computer security using ex-
tended static checking. Proceedings of the 23rd Annual
IEEE Symposium on Security and Privacy, 2002.

[8] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-hartman. Raceguard: Kernel protection from
temporary file race vulnerabilities. In In Proceedings
of the 10th USENIX Security Symposium. USENIX
Association, 2001.

[9] Scott A. Crosby and Dan S. Wallach. Denial of service
via algorithmic complexity attacks. In Proceedings of
the 12th USENIX Security Symposium, pages 29–44,
August 2003.

[10] Drew Dean and Alan J. Hu. Fixing races for fun and
profit: how to use access(2). In Proceedings of the 13th
USENIX Security Symposium. USENIX Association,
2004.

[11] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI’00:
Proceedings of the 4th conference on Symposium on
Operating System Design & Implementation, pages 1–
1, Berkeley, CA, USA, 2000. USENIX Association.

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy
Chou, and Benjamin Chelf. Bugs as deviant behavior:
a general approach to inferring errors in systems code.
SIGOPS Oper. Syst. Rev., 35(5):57–72, 2001.

[13] Rob Johnson and David Wagner. Finding user/kernel
pointer bugs with type inference. In SSYM’04: Pro-
ceedings of the 13th conference on USENIX Security
Symposium, pages 9–9, Berkeley, CA, USA, 2004.
USENIX Association.

[14] Ashlesha Joshi, Samuel T. King, George W. Dunlap,
and Peter M. Chen. Detecting past and present intru-
sions through vulnerability-specific predicates. SIGOPS
Oper. Syst. Rev., 39(5):91–104, 2005.

[15] Calvin Ko, George Fink, and Karl Levitt. Automated
detection of vulnerabilities in privileged programs by
execution monitoring. In In Proceedings of the 10th
Annual Computer Security Applications Conference,
pages 134–144, 1994.

[16] Calvin Ko and Timothy Redmond. Noninterference and
intrusion detection. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy, page 177,
Washington, DC, USA, 2002. IEEE Computer Society.

[17] Kyung-Suk Lhee and Steve J. Chapin. Detection of
file-based race conditions. International Journal of
Information Security, 4(1-2):105–119, 2005.

[18] Robert Love. The linux process scheduler. http:
//www.informit.com/articles/article.aspx?p=101760,
November 2003.

[19] Mazières and M. Kaashoek. Secure applications need
flexible operating systems. In HOTOS ’97: Proceed-
ings of the 6th Workshop on Hot Topics in Operating
Systems (HotOS-VI), page 56, Washington, DC, USA,
1997. IEEE Computer Society.

[20] Calton Pu and JinPeng Wei. A methodical defense
against tocttou attacks: The edgi approach. In Proceed-
ings of the 2006 International Symposium on Secure
Software Engineering, March 2006.

[21] Frank Schmuck and Jim Wylie. Experience with
transactions in quicksilver. In SOSP ’91: Proceedings
of the thirteenth ACM symposium on Operating systems
principles, pages 239–253, New York, NY, USA, 1991.
ACM.

[22] Benjamin Schwarz, Hao Chen, David Wagner, Geoff
Morrison, Jacob West, Jeremy Lin, and Wei Tu. Model
checking an entire linux distribution for security vi-
olations. Technical Report UCB/CSD-05-1384, UC
Berkeley, April 2005.

[23] Dan Tsafrir. Personal communication. January 2009.

[24] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. Se-
cretly monopolizing the CPU without superuser privi-
leges. In USENIX Security Symposium, pages 239–256,
Boston, Massachusetts, August 2007.

[25] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da
Silva. Portably preventing file race attacks with user-
mode path resolution. Technical Report RC24572, IBM
T. J. Watson Research Center, Yorktown Heights, NY,
June 2008. (submitted for publication).

[26] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da
Silva. Portably solving file tocttou races with hardness
amplification. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies, February
2008.

[27] Dan Tsafrir, Dilma Da Silva, and David Wagner. The
murky issue of changing process identity: revising
“setuid demystified”. USENIX ;login, 33(3):55–66,
June 2008.

[28] Eugene Tsyrklevich and Bennet Yee. Dynamic detec-
tion and prevention of race conditions in file accesses.
In Proceedings of the 12th USENIX Security Sympo-
sium, pages 243–256, August 2003.

[29] Prem Uppuluri, Uday Joshi, and Arnab Ray. Preventing
race condition attacks on file-systems. In SAC ’05:
Proceedings of the 2005 ACM symposium on Applied
computing, pages 346–353, New York, NY, USA, 2005.
ACM.

[30] J. Viega, J. T. Bloch, Y. Kohno, and G. Mcgraw. Its4:
a static vulnerability scanner for c and c++ code. In
Proceedings of the 16th Annual Conference on Com-
puter Security Applications (ACSAC), pages 257–267,
2000.

[31] David Wagner. Design principles for security-conscious
systems. http://www.cs.berkeley.edu/∼daw/teaching/
cs261-f07/slides-aug30.pdf.

[32] Jinpeng Wei and Calton Pu. Tocttou vulnerabili-
ties in unix-style file systems: an anatomical study.
In FAST’05: Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies,
pages 12–12, Berkeley, CA, USA, 2005. USENIX
Association.

[33] C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok.
Extending ACID Semantics to the File System. ACM
Transactions on Storage (TOS), 3(2):1–42, June 2007.

Appendix

Our filename generation algorithm improves upon
the brute-force attack of Crosby, et al.[9] by using a
birthday attack.

Note that, because each OS mixes in the directory
identifier into the hash of a filename, we are not able to
compute which bucket our filenames land in. However,
we are certain that they all land in the same bucket,
and this is all that is needed to mount the algorithmic
complexity attack.

Linux 2.6.28. For any 8-bit character c, let ĉ =
(c << 4)+(c >> 4). Given a string of 8-bit characters
c1 · · · cn, define

t(c1 · · · cn) = 11nĉ1 + 11n−1ĉ2 + · · ·+ 11ĉn mod 232

The Linux hash for a filename c1 · · · cn in a directory
identified by dir is

h(dir, c1 · · · cn) = somefunc(dir, t(c1 · · · cn))

The details of somefunc are irrelevant – two filenames
in the same directory collide under h if they collide
under t, so we only need to find collisions in t.

Observe that if 1 < m < n, then

t(c1 · · · cn) = 11n−mt(c1 · · · cm) + t(cm+1 · · · cn)

Thus, if s1 and s2 are strings such that t(s2) =
−11|s2|t(s1) mod 232, then t(s1||s2) = 0, where “||”
represents string concatenation. We can find a large
number of such strings with the following algorithm:

1) Select L random 6-character strings s1, . . . , sL,
and create the table of pairs (si, t(si)).

2) Sort the table by its second column.
3) For each entry (s, x) in the table, use binary

search to look for another entry of the form

(s′,−116x mod 232). If such an entry exists,
output s||s′.

For L < 232, this algorithm runs in L logL time, and
the expected number of hits is L2/232.

The strings output by the above algorithm are only
12 characters long and do not necessarily have any
common prefix. However, note that if t(s1) = t(s2)
and |s1| = |s2|, then for any other string s, t(s||s1) =
t(s||s2). Therefore we can take the outputs of the above
algorithm and simply prepend a long common prefix
of our choice.

FreeBSD 7.0. Given an 8-bit character c, de-
fine the function ĉ(x) = (16777619x mod 232) ⊕
c, where ⊕ represents bitwise XOR of 32-bit
words. For a given string s = c1 · · · cn, let
ŝ(x) = cn(cn−1(· · · (c1(x)) · · ·)). Define t(s) =
s(33554467). The FreeBSD hash for a filename
c1 · · · cn in a directory identified by dir is

h(dir, s) = somefunc(dir, t(s))

As with Linux, we only need to find collisions in t.
Note that the functions ĉ are invertible, and hence so

are the functions ŝ. If two strings s and s′ satisfy the
equation s(33554467) = s′−1(0), then t(s||s′) = 0.
We can find a large number of such strings with a
long common prefix as follows.

1) Pick a prefix string, pre, and let SEED =
p̂re(33554467).

2) Pick L random 6-character strings s1 . . . , sL and
generate the table T of pairs (si, ŝi(SEED)).

3) Pick L random 6-character strings s′1, . . . , s
′
L

and generate the table T ′ of pairs (s′i, ŝ′
−1

i (0)).
4) Sort T ′ by its second column.
5) For each entry (s, x) in T , binary search for an

entry of the form (s′, x) in T ′. If one exists,
output pre||s||s′.

OpenSolaris 5.11. Let

t(c1 · · · cn) = 17n−1c1 + 17n−2c2 + · · ·+ cn mod 232

and

h(dir, c1 · · · cn) = 17ndir + t(c1 · · · cn)

Two strings of the same length and in the same
directory collide under h if they collide under t. We
can therefore use the same strategy as with Linux.

OpenBSD 3.4. . Let

t(c1 · · · cn) = 33n5381 + 33n−1c1 + · · ·+ cn mod 232

and
h(dir, s) = somefunc(dir, t(s))

Again, we only need to find collisions in t, and we can
use the same basic strategy as with OpenSolaris.

